Expressiveness and Complexity of Subclasses of Quantified Boolean Formulas
نویسندگان
چکیده
We give a brief overview of expressiveness and complexity results for a hierarchy of subclasses of quantified Boolean formulas with close connections to Boolean circuits and minimal unsatisfiability.
منابع مشابه
Resolution and Expressiveness of Subclasses of Quantified Boolean Formulas and Circuits
We present an extension of Q-Unit resolution for formulas that are not completely in clausal form. This b-unit resolution is applied to different classes of quantified Boolean formulas in which the existential and universal variables satisfy the Horn property. These formulas are transformed into propositional equivalents consisting of only polynomially many subformulas. We obtain compact encodi...
متن کاملAn Alternative Representation for QBF
Quantified Boolean formulas are a powerful representation that have been used to capture and solve a variety of problems in Artificial Intelligence. While most research has focused on quantified Boolean formulas in prenex normal form (QBF), we explore an alternative representation of quantified Boolean formulas, called Constrained Quantified Formulas (CQF). CQF allows for a more direct represen...
متن کاملOn the Expressive Power of CNF Formulas of Bounded Tree- and Clique-Width
Starting point of our work is a previous paper by Flarup, Koiran, and Lyaudet [5]. There the expressive power of certain families of polynomials is investigated. Among other things it is shown that polynomials arising as permanents of bounded tree-width matrices have the same expressiveness as polynomials given via arithmetic formulas. A natural question is how expressive such restricted perman...
متن کاملDichotomy Theorems for Alternation-Bounded Quantified Boolean Formulas
In 1978, Schaefer proved his famous dichotomy theorem for generalized satisfiability problems. He defined an infinite number of propositional satisfiability problems, showed that all these problems are either in P or NP-complete, and gave a simple criterion to determine which of the two cases holds. This result is surprising in light of Ladner’s theorem, which implies that there are an infinite...
متن کاملOn the Gap between the Complexity of SAT and Minimization for Certain Classes of Boolean Formulas
It is a wellknown fact that the satisfiability problem (SAT) for Boolean formulas in a conjunctive normal form (CNF) is NP complete, i.e. Σ1 complete. It is also known that the decision version of Boolean minimization for CNF inputs is Σ2 complete. On the other hand there are several subclasses of CNFs (e.g. Horn CNFs) for which SAT is known to be in P = Σ0 while the minimization problem is Σ1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010